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Abstract
The quantum mechanical equivalent of parametric resonance is studied. A
simple model of a periodically kicked harmonic oscillator is introduced which
can be solved exactly. Classically stable and unstable regions in parameter
space are shown to correspond to Floquet operators with qualitatively different
properties. Their eigenfunctions, which are calculated exactly, exhibit a
transition: for parameter values with classically stable solutions the eigenstates
are normalizable while they cannot be normalized for parameter values with
classically unstable solutions. Similarly, the spectrum of quasi energies
undergoes a specific transition. These observations remain valid qualitatively
for arbitrary linear systems exhibiting classically parametric resonance such
as the paradigm example of a frequency modulated pendulum described by
Mathieu’s equation.

PACS numbers: 03.65.Sq, 05.45.−a

1. Introduction

The highly complicated behaviour of classically chaotic systems does not translate in an
obvious and straightforward way into properties of their quantum counterparts. Nevertheless,
various features such as energy level statistics and the spatial structures of wave functions have
been identified [1, 2] as more or less faithful quantum indicators of chaos in the classical limit.
The extreme sensitivity of classically chaotic systems to the variation of initial conditions
appears, for fundamental reasons, to figure less prominent in quantum systems—although
deterministic randomness is compatible with Schrödinger dynamics [3].

Parametric resonance is a useful concept in order to understand the transition from regular
to chaotic motion in classical dynamic systems. Each of the phase space filling tori of an
integrable system (with two degrees of freedom) is characterized by a frequency ratio, and the
value of this parameter determines the fate of a torus under a perturbation according to the
KAM theorem [4]. When the strength of the perturbation increases, initially small areas of
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instability proliferate in the form of Arnold tongues. They echo the intricate structure of phase
space regions where motion on tori and irregular trajectories coexist. Apart from its conceptual
importance, parametric resonance has found applications in systems with many degrees of
freedom providing, for example, an important mechanism in the formation of patterns [5, 6].

The purpose of this paper is to study the phenomenon of parametric resonance in a
quantum context. Hamiltonians quadratic in position and momentum are known to provide
relevant, if not paradigmatic, examples of classical parametric resonance. Since the classical
and quantum mechanical behaviour of such systems are intimately related, the program here
is to make explicit what the quantum manifestations of the classical instability look like. In
particular, the focus will be on the quasi-energy spectrum of the quantum mechanical evolution
operator or Floquet operator and on its eigenstates. It will be shown that the properties of the
quantum system unambiguously reflect the stability and instability of its classical counterpart.

In section 2 classical parametric resonance is discussed from a general point of view.
An analytically solvable model exhibiting parametric resonance is introduced in section 3:
a classical harmonic oscillator is subjected to a perturbation which periodically dilates and
squeezes volumes in phase space. The parameter ranges for the instability of the classical
system are determined. In section 4, Floquet eigenstates and quasi energies of the associated
quantum system are calculated in the unstable case. By means of an effective Hamiltonian, a
comprehensive point of view for the possible scenarios is developed in section 5. Subsequently,
the result is shown to persist for linear systems with arbitrary periodic frequency modulation.
The generalization includes systems which are described classically by Mathieu’s equation.
Finally, the results are summarized and links to related models are pointed out.

2. Classical parametric resonance

Parametric resonance occurs if an appropriate parameter of a classical dynamical system is
varied periodically in time. Stable fixed points of the flow in phase space become unstable for
specific values of the period of the parameter variation. As an example, consider a pendulum
with mass m and length l under the influence of gravity, the support of which is moved up
and down by an amount�l < l with frequency ω0. The equilibrium position of the undriven
system corresponds to the bob resting vertically below the support. For small oscillations, the
pendulum is described by Mathieu’s equation

d2x

dt2
+ ω2(t)x = 0 (1)

with

ω2(t) = l −�l cos(ω0t) > 0 (2)

where x(t) is the vertical coordinate of the bob. This equation provides the paradigm
for parametric resonance in classical mechanics: the behaviour of its solutions has been
investigated in great detail [7] as a function of the parameters l,�l and ω0 (see [8] for an
interesting presentation). The equilibrium position is destabilized for appropriately chosen
values of�l and ω0: arbitrarily small deviations from the fixed point will grow exponentially
in time. This is characteristic for parametric resonance. For other parameter values, the
elliptic fixed point of the undriven system survives the perturbation. Smooth boundaries
decompose the parameter space into regions with stable and unstable behaviour. On the
separating boundary, a third marginal type of behaviour occurs which interpolates between
stable and unstable motion.

Parametric excitation can also have the opposite effect which is less intuitive: an unstable
fixed point may become a stable one. Indeed, the inverted pendulum turns stable under
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specific conditions on �l and ω(t), a phenomenon known as parametric stabilization. Small
deviations from the vertical position do not grow without bound but the pendulum remains in
the neighbourhood of its initial position for all times.

Qualitatively, these phenomena continue to exist for other types of periodic driving,
ω2(t +T ) = ω2(t); the actual division of parameter space into stable and unstable regions will
depend on the function ω(t). In the following, a particularly simple quantum system, known
to exhibit parametric resonance classically, will be studied in detail.

3. A simple model

Consider a harmonic oscillator with frequency ω and Hamiltonian H0 = p2/2m +mω2x2/2.
Subject it to a periodic perturbation [9],

H(t) = H0 +Hk(t) (3)

where

Hk(t) = α

2
(xp + px)δT (t) α ∈ R (4)

with an infinite comb of delta functions,

δT (t) =
∞∑

n=−∞
δ(t − nT ). (5)

In between the times Tn = nT , n ∈ Z, the particle with mass m oscillates in a quadratic
potential, while at times Tn it experiences an impulsive kick with amplitude αxp. In fact, the
Hamiltonian does not depend on three but only on two parameters (ωT and α) as seen from
introducing τ = t/T , and rescaling simultaneously p → √

mωp, q → q/
√
mω.

From a general point of view, the momentum dependence of the kick is a particular feature
of this system. Other driven systems which have been studied as models for chaotic motion
in both classical and quantum mechanics, such as the kicked rotator [10], have a position-
dependent amplitude only. Various authors pointed out the consequences which result from
this difference [11, 12], and explicitly solvable models have been studied [13].

Consider the evolution of the system over one period, from t = −ε to t = T − ε, say, for
ε � T . The equations of motion are

d

dt

(
x

p

)
=

(
αδT (t) 1/m
−mω2 −αδT (t)

) (
x

p

)
. (6)

The integration over the time interval −ε < t < ε is carried out by first introducing a smooth
approximation δεT (t) of the delta functions in (6). Then the solution of (6) is given by(

x(+ε)
p(+ε)

)
= T exp

[∫ +ε

−ε
dt Mε(t)

](
x(−ε)
p(−ε)

)
(7)

where the symbol T denotes time ordering, andMε(t) is the smooth 2 × 2 matrix from (6). A
straightforward calculation gives a simple result in the limit ε → 0,

Mk ≡ lim
ε→0

exp

[∫ +ε

−ε
dt Mε(t)

]
= exp

(
α 0
0 −α

)
=

(
eα 0
0 e−α

)
. (8)

Consequently, the interaction Hk(t) rescales instantaneously position and momentum by the
amounts exp[±α], respectively. In other words, it generates periodically dilations [14], which
preserve volume in phase space.
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Next, equations (6) are integrated over the remaining time interval between the kicks,
ε < t < T − ε. In the limit ε → 0, one obtains

M0 = lim
ε→0

Mε
0 = lim

ε→0
exp

[(
0 1/m

−mω2 0

)
(T − ε)

]

=
(

cosωT (mω)−1 sinωT
−mω sinωT cosωT

)
. (9)

Writing z = (x, p)T for points in phase space, the time evolution of the kicked harmonic
oscillator (3) over one full period from t = 0− to t = T −: z(T −) = Mz(0−), is thus due to a
kick followed by oscillatory motion, generated by the matrix

M = M0Mk =
(

eα cos(ωT ) (eαmω)−1 sinωT
−eαmω sinωT e−α cosωT

)
(10)

being symplectic and of unit determinant.
Dilations and oscillatory motion compete with each other. The overall character of the

motion over one period depends on the actual values of the parameters. The matrix M does not
vary over phase space. Hence, for given values of the parameters ω, α and T, all phase space
points z ( �= 0) evolve in a similar way. The matrix M in (10) can generate three qualitatively
different types of motion, conveniently characterized by their eigenvalues

λ± = 1
2 TrM ±

√
1
4 (TrM)2 − 1

= coshα cosωT ±
√

cosh2 α cos2 ωT − 1.
(11)

The eigenvalues may come as

(i) a complex conjugate pair with modulus one: λ± = exp[±i�];
(ii) a real reciprocal pair: |λ±| = exp[±µ];

(iii) a real degenerate pair with modulus one: λ+ = λ− = ±1.

If the eigenvalues of M are purely imaginary (i), the images of a point of phase space z under
the composed action of M0 and Mk are located on an ellipse. Appropriate rescaling of the
axes transforms it into a circle such that during one period the angular coordinate of a point
is seen to increase by an angle ω̃ defined through cos ω̃ ≡ coshα cosωT . The perturbation
changes the original motion only quantitatively, i.e. the frequency of the oscillator now is ω̃
instead of ω.

In case (ii), the real eigenvalues of M indicate a ‘hyperbolic rotation’ parametrized
conveniently by the positive real number µ with coshµ ≡ coshα cosωT . The time evolution
of the oscillator is changed qualitatively by the perturbation Hk(t) from stable to unstable
motion. According to the sign of the eigenvalues λ± the iterates of a phase space point
are located on one (ordinary hyperbolic) or two (hyperbolic with reflection) branches of a
hyperbola. The parameter regions associated with cases (i) and (ii) exhaust the parameter
space almost completely.

Stable and unstable regions are separated by boundaries defined by the condition
|coshα cosω T | = 1. For the parameter values of case (iii), iterates of phase space points are
either on one (λ+ = λ− = +1) or on two (λ+ = λ− = −1) straight lines. This situation may
be thought to interpolate between the elliptic and hyperbolic cases.

The three cases are related with specific invariant curves in phase space. To see this,
associate a quadratic form with the matrix M by

Q(z) = zT�Mz � =
(

0 1
−1 0

)
. (12)
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In fact, Q(z) is invariant under time evolution over one period,

Q(Mz) = Q(z) (13)

as follows from the symplecticity of M: MT�M = �. Using M0 and Mk as examples for (i)
and (ii), respectively, one obtains

Q0(z) ∝ 1
2 (p

2 +m2ω2x2) Qk(z) ∝ px ∝ (p + x)2 − (p − x)2 (14)

while the marginal situation (iii) implies

Qm(z) ∝ (p ± x)2 (15)

using cosωT = ±1/coshα and sinωT = tanhα. These results can be summarized by writing

Q(z) ∝ 1
2 (P

2 +�2X2) (16)

where (X, P ) are related to (x, p) by appropriate linear canonical transformations. Then, a
variation of the original parameters is reflected in a change of the factor �2 multiplying the
quadratic term in X: � is either real, purely imaginary or zero. In physical terms, the time
evolution of the system over one period is effectively that of a particle in an attractive or
repulsive quadratic potential, or in the absence of a potential. Not surprisingly, the quadratic
formsQ(z) will play an important role for quantum parametric resonance.

If cosωT = 1, or ωT = 2πk, k ∈ Z, an arbitrarily small kick amplitude α renders the
system unstable. This particularly simple situation is called resonant—the harmonic evolution
has no net effect: M0 = 1. Similarly, for ωT = 2π(k + 1/2), k ∈ Z, the time evolution is
resonant with reflection: each point z in phase space is mapped to (−z) by the harmonic time
evolution: M0 = −1.

4. Quantum parametric resonance

The quantum mechanical harmonic oscillator with an impulsive force [9] is described by the
Hamiltonian operator

Ĥ (t) = p̂2

2m
+
mω2

2
x̂2 +

α

2
(x̂p̂ + p̂x̂)δT (t). (17)

Position and momentum operators x̂ and p̂ satisfy the fundamental commutation relation
[x̂, p̂] = ih̄. The long-time behaviour of the system is determined by the Floquet operator
F = U(t0 + T , t0) ≡ UT . It maps a state at time t0 to the state at time t0 + T , i.e. over one
period: F |ψ(t0)〉 = |ψ(t0 + T )〉. Choose the time t0 = T −

0 = 0− just before the kick at t = 0.
Then, due to the δ-type interaction the Floquet operator is a product of two unitary operators:

F = U0Uk. (18)

The operator U0 generates harmonic motion with frequency ω from t = 0+ to t = T −:

U0(T
−, 0+) = T

∫ T −

0+
dt exp[−iĤ (t)/h̄] = exp

[
− i

h̄

(
p̂2

2m
+
mω2x̂2

2

)
T

]
(19)

where T denotes time ordering again. The operatorUk describes the effect of the kick at time
t = 0. As before, the time-ordered product is evaluated explicitly by approximating the δ
distribution as a strongly peaked, smooth function δεT and taking the limit ε → 0 [13],

Uk(0+, 0−) = T
∫ 0+

0−
dt exp [−iĤ (t)/h̄] = exp

[
− iα

2h̄
(x̂p̂ + p̂x̂)

]
. (20)
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As shown in [16], the resulting ‘squeeze operator’ [15] has an implementation in a quantum
optical context. Some properties of the operator (x̂p̂ + p̂x̂) have been studied in [17]. Using
the shorthand ẑ ≡ (x̂, p̂)T , the action of the Floquet operator F on position and momentum
operators works out as in the classical case:

ẑ(T −) = F ẑ(0−)F† = M0Mkẑ(0−) = Mẑ(0−) (21)

where

ẑ(T −) = U0ẑ(0+)U
†
0 = M0z(0+) (22)

ẑ(0+) = Ukẑ(0−)U †
k = Mkz(0−). (23)

These relations follow from either integrating the linear Heisenberg equations of motion or
from expanding and resumming the exponentials involved. On comparing equations (8), (9)
to the result (21), the intimate relation between the classical and quantum time evolutions
generated by a quadratic Hamiltonian is evident.

Therefore, the quantum system is expected to inherit the division of parameter space
into stable and unstable regions on the basis of equations (21), i.e. through the properties
of the matrix M. How do the different parameter regions manifest themselves in the quantal
framework? When moving in parameter space from a classically stable to an unstable region,
the eigenstates |φµ〉 as well as the quasi energies Eµ of the Floquet operator,

F |φµ〉 = exp(−iEµT/h̄)|φµ〉 (24)

will undergo qualitative changes. The merit of the present model is that one can determine
|φµ〉 and Eµ explicitly for characteristic cases. This will be done in section 5 by means of an
effective Hamiltonian Ĥ eff which generates the time evolution over one period.

Before presenting the unified treatment, the most interesting case of a Floquet operator
associated with a classically unstable region of parameters will be studied in detail. Consider,
for simplicity, the resonant case, defined by ωT = 2πk, k ∈ Z: the classical motion becomes
unstable for any nonzero value of α. The Floquet operator F reduces to just the kick operator
Uk. It is the simplicity of the action of the kick on position and momentum eigenstates which
allows one to construct the complete set of (δ-normalized) eigenstates of the time evolution
operator.

According to (23), the position operators x̂± just before and after the kick at time t = 0
are related by

x̂+ = Ukx̂−U
†
k = eαx̂− (25)

and the eigenvalue equations read

x̂+|x+〉 = x+|x+〉 x̂−|x−〉 = x−|x−〉. (26)

Multiplication of the second equation with Uk from the left and using (25) implies that

x̂− (Uk|x−〉) = e−αx− (Uk|x−〉). (27)

Hence, the state Uk|x−〉 is an eigenstate of x̂−; in other words, the operatorUk maps a position
eigenstate |x〉 to another position eigenstate with eigenvalue e−αx:

Uk|x〉 = 1√
ρ(x)

|e−αx〉. (28)

The factor 1/
√
ρ(x) accounts for a possible change of the normalization of the states. It

guarantees the completeness relation to hold in the form
∫ ∞
−∞ dx|x〉〈x| = 1 (cf [18]), and it is

fixed by the following condition:
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δ(x − x ′) = 〈x | x ′〉 = 〈x|U †
kUk|x ′〉 = 1

ρ(x)
〈e−αx | e−αx ′〉

= 1

ρ(x)
δ(e−α(x − x ′)) = eα

ρ(x)
δ(x − x ′). (29)

This requires ρ(x) = eα leading to

Uk|x〉 = e−α/2|e−αx〉 (30)

which agrees with the result in [19]. The action ofUk on a momentum eigenfunction |p〉 reads

Uk|p〉 = eα/2|eαp〉 (31)

as follows from a similar argument for p̂ or from exploiting 〈p | x〉 = 〈p|U †
kUk|x〉 etc.

The transformation property (30) provides the clue to determine the Floquet eigenstates
as linear combinations of position eigenstates. Imagine iterating a position eigenstate |x0〉
forwards and backwards by applying powers of Uk and U−1

k = U
†
k , respectively. After

multiplying with appropriate phase factors, candidates for eigenstates of F ≡ Uk have the
form

|x0, µ〉 = 1√
2π

∞∑
n=−∞

eiµn e−αn/2∣∣e−αnx0
〉
. (32)

As it stands, |x0, µ〉 is indeed mapped to itself under F , except for an additional factor
exp[−iµ],

F |x0, µ〉 = 1√
2π

∞∑
n=−∞

eiµn e−α(n+1)/2
∣∣e−α(n+1)x0

〉

= e−iµ 1√
2π

∞∑
n=−∞

eiµn e−αn/2∣∣e−αnx0
〉

= e−iµ|x0, µ〉. (33)

There is no restriction on the values of µ ∈ [0, 2π)—hence the spectrum of quasi energies
Eµ = µh̄/T is continuous. Let the label x0 be from either one of the two intervals [1, eα) or
[−eα,−1), α > 0, say. One can check explicitly that the scalar product of two such states
with different labels vanishes,

〈x0, µ | x ′
0, µ

′〉 = 1

2π

∞∑
m,n=−∞

e−iµn eiµ′m e−α(n+m)/2〈x0|(U †
k )
nUmk |x ′

0〉

= 1

2π

∞∑
n,m=−∞

e−i(µn−iµ′m) e−α(n+m)/2〈e−αnx0

∣∣ e−αmx ′
0

〉
δnm

= 1

2π

∞∑
n=−∞

ei(µ′−µ)n e−αnδ
(
e−αn(x0 − x ′

0)
)

= δ(µ− µ′)δ(x0 − x ′
0). (34)

Note that for x0 and x ′
0 chosen from the same reference interval, the scalar product of position

iterates with different n and m vanishes and, thus, gives rise to a Kronecker delta δnm.
The fact that the label x0 takes values in the interval [1, eα] does not imply a continuous

degeneracy of the quasi energies Eµ but only a countable one. This is due to the fact that
eigenstates of the position operator x̂ are not normalizable to one, i.e. they are not elements
of a Hilbert space L2(R)—nevertheless, these states can be used to expand its elements.
In section 5.3 the countable degeneracy of the quasi energies Eµ will follow from general
considerations.
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The completeness relation for the states |x,µ〉 reads∫ 2π

0
dµ

∫ eα

1
dx|x,µ〉〈x,µ| +

∫ 2π

0
dµ

∫ −eα

−1
dx|x,µ〉〈x,µ| + lim

ε→0

∫ +ε

−ε
dx|x〉〈x| = 1 (35)

where the integration extends over both fundamental intervals, and the state |x = 0〉 has to be
included as an additional (non-normalizable) eigenstate of the Floquet operator. This state is
clearly orthogonal to all other eigenstates of F in equation (32).

The Floquet operator associated with a classically unstable region is thus seen to have a
continuous spectrum of quasi energies, and its (generalized) eigenfunctions do not approach
zero for x → ±∞. In addition, there is one state localized at the origin, x = 0, thus ‘sitting
on top’ of the unstable fixed point of the classical map.

5. Effective Hamiltonian

According to equation (18) the Floquet operatorF is a product of two noncommuting operators
U0 and Uk which are quadratic functions of position x̂ and momentum p̂. Since the Floquet
operator is unitary, one can express it in the form F = exp[−iĤ effT/h̄], with an ‘effective’
Hamiltonian Ĥ eff. This operator is obtained from entangling the two unitary operators U0

and Uk into a single exponential using Baker–Campbell–Hausdorff technology as presented
in [20],

exp

[
− i

h̄

(
p̂2

2m
+
mω2x̂2

2

)
T

]
exp

[
− iα

2h̄
(x̂p̂ + p̂x̂)

]
≡ exp

[
− i

h̄
Ĥ effT

]
. (36)

In the present case, it is possible to determine explicitly the effective Hamiltonian since the
operators in the exponents of the product in (36) constitute a Lie algebra,

[x̂2, p̂2] = 2ih̄(x̂p̂ + p̂x̂) (37)

[(x̂p̂ + p̂x̂), p̂2] = 2ih̄p̂2 (38)

[(x̂p̂ + p̂x̂), x̂2] = −2ih̄x̂2 (39)

called ‘split three-dimensional algebra’ in [20], and well known as the algebra of the group
SU(1, 1). Physical realizations of this algebra, which is isomorphic to sl(2,R), so(1, 2) as
well as sp(1,R) (see [21]), can be given in terms of creation and annihilation operators of a
two-dimensional harmonic oscillator or angular momentum operators, for example.

Due to the commutation relations, the effective Hamiltonian must be a linear combination
of the three quadratic generators,

− i

h̄
Ĥ effT = ap̂2 + bx̂2 +

c

2
(x̂p̂ + p̂x̂). (40)

The transformation of the operators p̂ and x̂ over one period T through F has been determined
in equation (21), while in [20] their transformation has been calculated starting from a given
quadratic expression (40). Combining these results, it is straightforward to determine the
effective Hamiltonian: the parameters a, b, c must be expressed in terms of the elementsMjk

(j, k = 1, 2) of the matrix M. After some algebra one finds

a = i

h̄

�

2
M12 (41)

b = − i

h̄

�

2
M21 (42)

c = i

h̄

�

2
(M11 −M22). (43)
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The real number� is given by

� = arcsinhD

D
≡ �(D2) ∈ R (44)

thus being an even function of the difference between the eigenvalues of the matrix M,

D = 1
2 (λ+ − λ−) = (

1
4 (M11 +M22)

2 − 1
)1/2

. (45)

Using (10) for the matrix elementsMjk , one obtains the expression

Ĥ eff = �
sinωT

ωT

(
p̂2

2m eα
+
mω2 eα

2
x̂2 + ω sinhα cotωT (x̂p̂ + p̂x̂)

)
. (46)

For α = 0, the Hamiltonian Ĥ eff turns into Ĥ 0 since one finds �|α=0 = ωT/sinωT , using
(44), (45) and (11). Similarly, taking the limit of T → 0 in (46) can be shown to reproduce
correctly Uk via equation (36). It is interesting to note that this result is closely related to
the quantized quadratic form, i.e. the expression Q̂ = Q(ẑ) obtained from Q(z) in (12) by
replacing z → ẑ and appropriately symmetrizing,

Q(ẑ) ≡ ẑT �Mẑ = σĤ eff + τ Î , (47)

with two constants σ and τ . Retrospectively, it is natural to find that the generator for time
displacement over one period is a function of the quantized quadratic form invariant under the
corresponding classical motion. Then, obviously, the Floquet operator F commutes with the
corresponding quadratic form.

Therefore, three types of effective quantum Hamiltonians can arise which are in
correspondence with the classically stable, unstable and marginal cases. Each of them is
unitarily equivalent to one of the following expressions:

Ĥ eff ∝ 1
2 (P̂

2 +�2X̂2) (48)

where the operators P̂ and X̂ are unitarily equivalent to x̂ and p̂, and there are three possible
values for the frequency �, nonzero real, purely imaginary or equal to zero. For simplicity,
the discussion to follow will take (48) as a starting point. There is no need to use the explicit
expressions of Ĥ eff in terms of the original variables.

5.1. Stable elliptic case

For parameter values associated with a classically stable region, the effective Hamiltonian
operator Ĥ eff is unitarily equivalent to that of a harmonic oscillator with frequency � > 0.
Consequently, the eigenstates of the Floquet operator satisfy

F |n〉 = e−iεn |n〉 εn = EnT/h̄ (49)

with the familiar oscillator eigenstates |n〉,
Ĥ eff|n〉 = En|n〉 En = h̄� (

n + 1
2

)
n ∈ N0 (50)

which provide an orthonormal basis in Hilbert space. The spectrum of quasi energies εn
associated with the operator F in (49),

εn = �T
(
n + 1

2

)
mod 2π n = 0, 1, 2, . . . (51)

is obtained by ‘projecting’ the oscillator spectrum En onto the interval [0, 2π). Two
possibilities arise:

1. If �T is an irrational multiple of 2π then all quasi energies εn are different, εn �= εn′ .
The union of all εn is dense in the interval from 0 to 2π . The set of eigenvalues {εn} is
countable, and no quasi energy is degenerate.
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2. If �T is a rational multiple of 2π , say r/s, then εn+s = εn for all n, and there are only s
different quasi energies: ε0,ε1, . . . , εs−1 ∈ [0, 2π). Each value is countably degenerate,
and the Hilbert space H decomposes into a direct sum,

H =
s−1⊕
ν=0

Hν (52)

where the finite-dimensional degenerate subspace Hν is spanned by the states {|ν + ks〉,
k ∈ N0}.

5.2. Marginal case

Consider now parameter values which imply that the effective Hamiltonian operator is unitarily

equivalent to that of a free particle: Ĥ eff ∝ P̂
2
, i.e. � = 0. Its eigenstates are identical to

those of a momentum-type operator,

P̂ |P 〉 = P |P 〉 P ∈ (−∞,∞) (53)

hence require a δ-normalization. Since these states are also eigenstates of the Floquet operator
F , it has a continuous set of δ-normalized eigenstates. In the position representation, the
expansion coefficients of the states |P 〉 have modulus one throughout, and the states do not go
to zero for X → ±∞.

The quasi energies ε0,k± = P 2T/(2h̄) take all values in the interval [0, 2π). Each quasi
energy is countably degenerate: given a state |P0〉, all states |P0,k±〉 with

P±
0,k = ±

√
P 2

0 +
2h̄

T
2πk k = 1, 2, . . . (54)

are eigenstates with the same eigenvalue: exp
[−i(P±

0,k)
2T/(2h̄)

] = exp
[−iP 2

0 T
/
(2h̄)

]
.

5.3. Unstable hyperbolic case

The quantum system associated with a classically unstable region is unitarily equivalent to a
particle in an inverted quadratic potential, that is, the Hamiltonian in (48) with �2 < 0. The
potential takes arbitrarily large negative values for X → ±∞, hence the solutions oscillate
ever faster for increasing X. No normalizable eigenfunctions exist but there are two solutions
of Schrödinger’s equation for every value of the energy E. The spectrum of quasi energies
Eµ exhibits thus the same features as in the marginal case: the numbers Eµ take any value
between 0 and 2π , and each value is countably degenerate. This is due to the exponential
function which ‘wraps’ the real variableE ∈ (−∞,∞) around a circle. For the resonant case,
the solutions have been given explicitly in section 4 as a sum of delta functions in the position
representation with nonuniform amplitudes.

6. Arbitrary frequency modulation

The results obtained so far have been derived for a model with a particularly simple time
evolution. Classically, however, the phenomenon of parametric resonance is known to
occur for much more general periodic frequency modulations. In fact, the behaviour of
the corresponding quantum systems can be shown to exhibit qualitatively the same behaviour.
Consider the classical Hamiltonian

H(t) = p2

2m
+
mω2(t)

2
x2 ω2(t + T ) = ω2(t) (55)
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which generates the equations of motion (1). The system, a pendulum with a harmonically
modulated suspension point, exhibits parametric resonance as shown by Mathieu for the choice
of ω2(t) in (2). Write the Floquet operator of the system as a product of N unitary operators
for N consecutive time intervals of length T/N each,

F = T exp

[
− i

h̄

∫ T −

0−
dtĤ (t)

]
=
N−1∏
n=0

U(tn+1, tn) t0 = 0− tN = T −. (56)

In the limit N → ∞ the length of the time intervals goes to zero, and one has approximately

U(tn+1, tn) = T exp

[
− i

h̄

∫ tn+1

tn

dt

(
p̂2

2m
+
mω2(t)

2
x̂2

)]

� exp

[
− i

h̄

(
p̂2

2m
+
mω2

n

2
x̂2

)
T

N

]
(57)

where the number ω2
n takes a value between ω2(tn+1) and ω2(tn). Being quadratic in position

and momentum, any two adjacent exponentials can be entangled by means of a Baker–
Campbell–Hausdorff relation. The result is another exponential bilinear in x̂ and p̂ as follows
from the algebraic properties (39). Repeating this process for ever larger values of N, the
Floquet operator tends to

F = exp
[
− i

h̄

(
up̂2 + vx̂2 +

w

2
(x̂p̂ + p̂x̂

)]
= exp

[
− i

h̄
Ĥ ω

effT
]
. (58)

According to the values of the parameters u,v andw, the effective Hamiltonian Ĥωeff necessarily
will be (unitarily equivalent to) one of the three possible types discussed in section 5.
As long as the frequency modulation is periodic, no qualitatively different behaviour can
occur within this class of systems. Clearly, the separation of the parameter space into stable
and unstable regions will depend in a subtle way on the actual function ω2(t).

7. Discussion and outlook

The main result of the present paper is a global view on the phenomenon of parametric
resonance in classical and quantum systems. Classically, in a periodically driven linear system
three qualitatively different types of motion are possible, according to the chosen parameter
values. This division of parameter space is mirrored quantum mechanically by qualitatively
different spectra of the Floquet operator. Its eigenfunctions associated with a classically stable
region are normalizable, and they become singular when moving over into a parameter region
of classically unstable motion. This has been made explicit by constructing the eigenfunctions
in terms of (improper) position eigenstates.

The class of time-dependent harmonic oscillators is well known to provide insight into
various aspects of classical and quantum mechanics. Therefore, some of the results can be
found implicitly in work dealing with other properties of such systems. Closest to the present
approach is, maybe, work by Perelomov [22]: in a discussion of coherent states, a group-
theoretical approach to driven linear systems is presented based on work in [23, 24]. The
Heisenberg equations of motion for a system showing parametric resonance have been solved
in [25]. Further, the paper [16] deals with the generation of parametric resonance within the
realm of quantum optics. In this context, [26] is also interesting, where exponential divergence
of the energy expectation value has been derived for an oscillator with periodically modulated
frequency. In [27], the relationship of an autonomous oscillator with fixed frequency and no
driving to a driven oscillator with time-dependent frequency (and even damping) is established.
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Also, parametric resonance is known to play an important role in the collective excitation of
atoms when they are subjected to a strong laser field [28].

An important body of related work deals with parametric stabilization. For example, the
stability regions of an ion in a Paul trap are studied in [29]. Stable fixed points can be created
in a Rydberg system by shining an appropriately tuned, circularly polarized wave on an atom;
the quantum mechanical properties of this system have been worked out in [30]. In fact,
parametric stabilization could be studied along the lines of the present paper by perturbing an
initially unstable system, that is, an inverted harmonic oscillator (replace ω2 by −ω2 in H0 of
equation (3)).

The impact of an instantaneous mass change of a quantum harmonic oscillator also gives
rise to squeezing, and the impact on the variance of position, for example, has been studied in
[31]. Non-periodic frequency modulations have been studied by various authors, starting with
the now well-known Caldirola–Kanai oscillator with exponentially increasing mass [32, 33]
which, effectively, gives rise to damped motion of the oscillator. Among other works, exact
solutions have been found for a polynomial time-dependence, ω2(t) = ω2tb, b > 0 in [34].

In the studies mentioned, no global picture of quantum parametric resonance has been
established. Further, no simple derivation of the eigenfunctions of the Floquet operator in the
position basis can be found.

Finally, it is worthwhile to point out that the periodically driven oscillator systems studied
here suggest a natural generalization: modify the amplitude of the kick according to

Ĥ (t) = Ĥ 0 +
α

2
(V (x̂)p̂ + p̂V (x̂))δT (t) (59)

where V (x) is some smooth function. Such a kick can be shown to generate nonlinear maps
of configuration space onto itself [9]. It will be shown elsewhere that features such as quasi-
periodicity and a devil’s staircase, which are known as characteristic features of classically
chaotic dynamics, also may occur in the time evolution of quantum systems.
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